Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Chem (Oxf) ; 4: 100111, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35592704

RESUMEN

The apple fruit (Malus domestica L. Borkh) is one of the most popular fruits worldwide. Beyond their beneficial properties, apples contain proteins that trigger allergic reactions in susceptible consumers. Mal d1 to d4 are allergens present in a variety of different isoforms in apples. In this study, we used proteomics to quantify all four Mal d proteins in 52 apple genotypes with varying allergenic potentials. A total of 195, 17, 14, and 18 peptides were found to be related to Mal d1, d2, d3, and d4 proteins, respectively of which 25 different Mal d proteins could be unambiguously identified. The allergenic potential of the Mal d isoforms was characterized by comparing the isoform abundance with the allergenic score of genotypes from oral challenge tests. The detected Mal d peptides presumably have different IgE binding properties and could be used as potential molecular markers to discriminate between hypoallergenic and hyperallergenic cultivars.

2.
Front Plant Sci ; 12: 638671, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33719316

RESUMEN

Many people across the world suffer from iodine (I) deficiency and related diseases. The I content in plant-based foods is particularly low, but can be enhanced by agronomic biofortification. Therefore, in this study two field experiments were conducted under orchard conditions to assess the potential of I biofortification of apples and pears by foliar fertilization. Fruit trees were sprayed at various times during the growing season with solutions containing I in different concentrations and forms. In addition, tests were carried out to establish whether the effect of I sprays can be improved by co-application of potassium nitrate (KNO3) and sodium selenate (Na2SeO4). Iodine accumulation in apple and pear fruits was dose-dependent, with a stronger response to potassium iodide (KI) than potassium iodate (KIO3). In freshly harvested apple and pear fruits, 51% and 75% of the biofortified iodine was localized in the fruit peel, respectively. The remaining I was translocated into the fruit flesh, with a maximum of 3% reaching the core. Washing apples and pears with running deionized water reduced their I content by 14%. To achieve the targeted accumulation level of 50-100 µg I per 100 g fresh mass in washed and unpeeled fruits, foliar fertilization of 1.5 kg I per hectare and meter canopy height was required when KIO3 was applied. The addition of KNO3 and Na2SeO4 to I-containing spray solutions did not affect the I content in fruits. However, the application of KNO3 increased the total soluble solids content of the fruits by up to 1.0 °Brix compared to the control, and Na2SeO4 in the spray solution increased the fruit selenium (Se) content. Iodine sprays caused leaf necrosis, but without affecting the development and marketing quality of the fruits. Even after three months of cold storage, no adverse effects of I fertilization on general fruit characteristics were observed, however, I content of apples decreased by 20%.

3.
Sci Rep ; 10(1): 9144, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32499528

RESUMEN

A rising proportion of the world population suffers from food-related allergies, including incompatibilities to apples. Although several allergenic proteins have been found in apples, the most important proteins that cause allergic reactions to apples in Central-Northern Europe, and North America are the Mal d 1 proteins, which are homologues of the birch pollen allergen Bet v 1. As the demand for hypoallergenic fruits is constantly increasing, we selected apple genotypes with a low total content of Mal d 1 by enzyme-linked immunosorbent assay analysis from segregating populations and tested the tolerability of these fruits through a human provocation study. This tiered approach, which exploited the natural diversity of apples, led to the identification of fruits, which were tolerated by allergic patients. In addition, we found a significant correlation (coefficient >0.76) between the total Mal d 1 content and flavan-3-ol amount and show that the isoform composition of the Mal d 1 proteins, which was determined by LC-MS/MS has a decisive effect on the tolerability of apple genotypes. The approach presented can be applied to other types of fruit and to other allergenic proteins. Therefore, the strategy can be used to reduce the allergen content of other plant foods, thereby improving food safety for allergy subjects.


Asunto(s)
Malus/metabolismo , Proteínas de Plantas/análisis , Secuencia de Aminoácidos , Antígenos de Plantas/análisis , Antígenos de Plantas/inmunología , Cromatografía Líquida de Alta Presión , Ensayo de Inmunoadsorción Enzimática , Flavonoides/análisis , Hipersensibilidad a los Alimentos/diagnóstico , Hipersensibilidad a los Alimentos/etiología , Frutas/genética , Frutas/metabolismo , Genotipo , Humanos , Malus/genética , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/inmunología , Proteínas de Plantas/metabolismo , Polifenoles/análisis , Isoformas de Proteínas/análisis , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/inmunología , Isoformas de Proteínas/metabolismo , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...